On-the-Fly Learning in a Perpetual Learning Machine
نویسنده
چکیده
Despite the promise of brain-inspired machine learning, deep neural networks (DNN) have frustratingly failed to bridge the deceptively large gap between learning and memory. Here, we introduce a Perpetual Learning Machine; a new type of DNN that is capable of brain-like dynamic ‘on the fly’ learning because it exists in a self-supervised state of Perpetual Stochastic Gradient Descent. Thus, we provide the means to unify learning and memory within a machine learning framework. We also explore the elegant duality of abstraction and synthesis: the Yin and Yang of deep learning.
منابع مشابه
Use it or Lose it: Selective Memory and Forgetting in a Perpetual Learning Machine
In a recent article we described a new type of deep neural network– a Perpetual Learning Machine (PLM) – which is capable of learning ‘on the fly’ like a brain by existing in a state of Perpetual Stochastic Gradient Descent (PSGD). Here, by simulating the process of practice, we demonstrate both selective memory and selective forgetting when we introduce statistical recall biases during PSGD. F...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1509.00913 شماره
صفحات -
تاریخ انتشار 2015